
Chapter 4

Repeated Trials

4.1 Introduction
Repeated indepentent trials in which there can be only two outcomes are
called Bernoulli trials in honor of James Bernoulli (1654-1705). As we shall
see, Bernoulli trials lead to the binomial distribution. If a the number of trials
is large, then the probability of k successes in n trials can be approximated by
the Poisson distribution. The binomial distribution and the Poisson distribu-
tion are closely approximated by the normal (Gaussian) distribution. These
three distributions are the foundation of much of the analysis of physical
systems for detection, communication and storage of information.

4.2 Bernoulli Trials
Consider an experiment E that has two outcomes, say a and b, with proba-
bility p and q = 1− p, respectively. Let En be the experiment that consists
of n independent repetitions of E. The outcomes are sequences with the
components a and b. The outcomes of E2 are {aa}, {ab}, {ba}, {bb}, with
probabilities p2, pq, pq, and q2, respectively.

Theorem 4.2.1 The outcomes of En are the 2n sequences of length n. The
number of outcomes of En that contain a exactly k times is given by the
binomial coefficient.

¡
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¢
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k!(n−k)! .

Proof: Assume that each of the terms in the expansion of (a+
b)n represents one of the possible outcomes of the experiment
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En. Then multiplying by (a + b) to form (a+ b)n+1 produces an
expression in which each term in (a+b)n appears twice—once with
a appended and once with b appended. If the assumption is true,
then this constructs all possible distinct arrangements of n + 1
terms.

The above is certainly true for n = 1, since (a + b)1 = a + b, so
that all sequences of length n = 1 are represented. Multiplying by
(a+ b) causes a and b to be suffixed to the terms in the previous
expression, yielding (a+ b)2 = (a+ b)(a+ b) = aa+ ab+ ba+ bb.
These are all sequences of length n = 2. At this point, we have
proved the theorem by induction. Since it is true for n = 1 it
must be true for n = 3, and so on.¨

It is known that (a+ b)n =
Pn

k=0
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akbn−k, so that the number of terms

that contain a k-times and b (n−k)-times is given by the binomial coefficient¡
n
k

¢
.
To illustrate, multiplication of (a+ b)2 by (a+ b) yields (a + b)3 = (a +

b)2(a+b) = aaa+aba+baa+bba+aab+abb+bab+bbb. = a3+3a2b+3ab2+b3,
in which
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¢
= 1.We would not necessarily use this

technique to generate all the sequences, but we could. An important insight
of this techique is the calculation of the probability the outcome is a term
with k appearances of a and (n − k) appearances of b. In the following we
will use the common language of “success” and “failure”, which correspond
to a and b, for the result of each trial in a Bernoulli experiment.

Theorem 4.2.2 The probability that the outcome of an experiment that con-
sists of n Bernoulli trials has k successes and n − k failures is given by the
binomial distribution

b(n, k, p) =

µ
n

k

¶
pk(1− p)n−k (4.1)

where the probability of success on an individual trial is given by p.

Proof: Since the trials are independent, the probability of any
particular sequence of k successes and n−k failures is pk(1−p)n−k.
All sequences with the same mixture are equally probable. Hence,
the probability of some sequence with k successes and (n−k) fail-
ures is the number of such sequences times the probability. By
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the theorem 4.2.1, the number of such sequences is
¡
n
k

¢
. Multiply-

ing by the sequence probability pk(1 − p)n−k gives the required
result.¨

Graphs of the binomial distribution for n = 30 and p = 0.5, 0.3 and
0.1 are shown in the following figures. We note that the distribution has a
peak value that falls near np. This is an important quality of the binomial
distribution. It says that if the probability of success is p then on n trials
you are most likely to observe about np successes and n(1− p) failures. The
fact that the largest value is near k = np was established in Problem 6 of
Section 2.6.5.
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A plot of the binomial distribution b(30, k, 0.5).
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A plot of the binomial distribution b(30, k, 0.3).
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A plot of the binomial distribution b(30, k, 0.1).

The variance of a binomial distribution is shown in Exercise 3 to be
np(1 − p), and hence the standard deviation is pnp(1− p) The standard
deviation is a measure of the spread of a distribution about its mean value.
Both the mean value and the standard deviation increase with the number
of trials, but the mean value increases faster. Consider the ratio σ/µ as a

measure of the spread relative to the mean value. We see that σ/µ = 1√
n

q
1−p
p

which is a function that decreases in proportion to the square root of the
number of trials. A graph of the binomial distribution as a function of the
fraction k/n, which places it on a normalized scale, is shown in Figure 4.1
for n = 30, 100 and 300, which shows the concentration near the mean value
as n increases.

4.2.1 Law of Large Numbers

With Bernoulli trials it is natural to ask a question such as “How wide is the
central peak?” where by “wide” we may mean the interval that contains,
say, 95% of the probability. It is clear from Figure 4.1 that the size of such
an interval must shrink with increasing n. This question and many that are
related to it can be answered by defining the random variable Sn to be the
number of successes on n trials. This corresponds to the index k that we
have been using in the binomial distribution. Then

P [Sn = k] = b(n, k, p) (4.2)
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Figure 4.1: Three plots of the binomial distribution, for n = 30, 100, 300.
The curves become sharper as n increases. The graphs have been normalized
so they cover the same area, which visually adjusts for the different number
of points in each plot.

We may now ask about the distribution function for Sn. By definition,

FSn(r) = P [Sn ≤ r] =
 0 r < 0Pr

k=0 b(n, k, p) 0 ≤ r ≤ n
1 r > n

(4.3)

Let us look at the right tail of the distribution. Analysis of the left tail will
be symmetric. This will lead us to a method of analyzing the central region.
If r > np then b(n, r, p) is on an decreasing part of the curve. The ratio1 of
successive terms is

b(n, r, p)

b(n, r − 1, p) =
(n− r + 1)p

rq
= 1 +

(n+ 1)p− r
rq

< 1− r − np
rq

(4.4)

The ratio of successive terms is a number that is decreasing. Therefore, the
sum is smaller than the sum over a geometric series, in which the ratio of
terms is a constant. A bound on the probability P [Sn ≥ r] is therefore given
by the geometric sum with ratio ρ if ρ is the ratio for the first pair of terms.

P [Sn ≥ r] ≤
∞X
k=0

b(n, r, p)ρk = b(n, r, p)
1

1− ρ
(4.5)

1Here as elsewhere we will use q = 1− p as a simplification.
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Substitution of ρ = 1− r−np
rq

now leads to the upper bound

P [Sn ≥ r] ≤ b(n, r, p) rq

r − np (4.6)

We now need to replace b(n, r, p) with an upper bound that is easy to work
with. We do this by noting that all of the terms between the center, m, and r
are greater than b(n, r, p) and that the total of those terms must be less than
1. The number of such terms is no more than r−np, so (r−np)b(n, r, p) < 1
so that b(n, r, p) < 1/(r − np). Puttint this into the above equation yields
the simple upper bound

P [Sn ≥ r] ≤ rq

(r − np)2 if r > np (4.7)

A similar analysis could be performed on the left tail. However, this can be
avoided by observing that saying that there are at most r successes is the
same as saying there are at least (n− r) failures. Exchanging n− r for r and
p for q on the right side above then yields, after simplification,

P [Sn ≤ r] ≤ (n− r)p
(np− r)2 if r < np (4.8)

Let us now look at the probability that the number of successes is much
different from np.We expect that as n increases and the width of the binomial
distribution decreases relative to its mean, then almost all of the results will
fall near np.We can address this by using the above results. Let r = n(p+ε).
Then

P [Sn ≥ n(p+ ε)] ≤ n(p+ ε)q

(n(p+ ε)− np)2 =
n(p+ ε)q

(nε)2
→ 0

because the denominator grows as n2 while the numberator grows as n. In
the same way, the probability on the left tail also decreases with n, so that
P [Sn ≤ n(p− ε)]→ 0. Therefore, almost all the probability is in the central
region, which is of width nε. Since the location of the center is m = np, the
ratio of the width to the center point is ε/p, which can be as small as one
wishes. We have therefore established

Theorem 4.2.3 Law of Large Numbers: The probability that the ratio
Sn/n differs from p by less than ε in a set of n Bernoulli trials approaches
unity as n increases.

P

·¯̄̄̄
Sn
n
− p
¯̄̄̄
< ε

¸
→ 1
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As n increases, the probability that the average number of successes differs
from p by more than ε tends to zero2. We find application of the law of large
numbers in many areas of science and engineering. One prominent example
is in Shannon’s development of the noisy channel coding theorem.

4.3 Poisson Distribution
The Poisson3 distribution can be derived as a limiting form of the binomial
distribution in which n is increased without limit as the product λ = np
is kept constant. This corresponds to conducting a very large number of
Bernoulli trials with the probability p of success on any one trial being very
small. The Poisson distribution can also be derived directly in a manner
that shows how it can be used as a model of real situations. In this sense,
it stands alone and is independent of the binomial distribution. The latter
insight is worthwhile, and we shall therefore invest the effort. The derivation
as a limiting form of the binomial distribution is addressed in Exercise 5.
In order to derive the Poisson process directly and also motivate a model

of a physical situation, we will describe a realistic experiment. Imagine that
you are able to observe the arrival of photons at a detector. Your detector is
designed to count the number of photons that arrive in an interval ∆τ . We
will make the assumption that the probability of one photon arriving in ∆τ
is proportional to ∆τ when ∆τ is very small.

P (1;∆τ) = a∆τ for small ∆τ (4.9)

where a is a constant whose value is not yet determined. We make the second
assumption that the probability that more than one photon arrives in ∆τ is
negligible when ∆τ is very small.

P (0;∆τ ) + P (1;∆τ ) = 1 for small ∆τ (4.10)

We also assume that the number of photons that arrive in one interval is inde-
pendent of the number of photons that arrive in some other non-overlapping
interval. These three assumptions are all that we need to derive the Pois-
son distribution. Any process that fits these assumptions will therefore be
modeled by the Poisson distribution.

2For further discussion of the law of large numbers see William Feller, An Introduction
to Probability Theory and its Applications, Vol I, page 152.

3Siméon D. Poisson, (1781-1840).
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To derive the distribution we begin by calculating the probability that
zero photons arrive in a finite interval of length τ . The probability that a
zero photons arrive in τ is equal to the probability that zero photons arrive
in τ −∆τ and no photons arrive in ∆τ . Since the intervals do not overlap,
the events are independent and

P (0; τ) = P (0; τ −∆τ)P (0;∆τ ) (4.11)

If we substitute (4.10) and (4.9) and rearrange we find

P (0; τ)− P (0; τ −∆τ )

∆τ
= −aP (0; τ −∆τ)

If we now let ∆τ → 0 we have the definition of the derivative on the left.
This leads to the differential equation

dP (0; τ)

dτ
= −aP (0; τ) (4.12)

The solution is P (0; τ ) = Ce−aτ . When we apply the boundary condition
limτ→0 P (0; τ) = 1 we find C = 1, so that

P (0; τ ) = e−aτ (4.13)

Consider next the probability that k photons arrive in interval τ+∆τ . There
are only two possiblities. Either k arrive in τ and 0 arrive in ∆τ or k − 1
arrive in τ and 1 arrives in ∆τ . Since these events are mutually exclusive,

P (k; τ +∆τ ) = P (k; τ )P (0;∆τ) + P (k − 1; τ )P (1;∆τ)

Now substitute for P (0;∆τ ) and P (1;∆τ) and rearrange.

P (k; τ +∆τ )− P (k; τ )
∆τ

+ aP (k; τ ) = aP (k − 1; τ)

In the limit we have the differential equation

dP (k; τ)

dτ
+ aP (k; τ) = aP (k − 1; τ ) (4.14)

This is a recursive equation that ties P (k; τ) to P (k − 1; τ). To solve it we
need to convert it into something we can integrate. Multiply through by eaτ :

eaτ
dP (k; τ)

dτ
+ aeaτP (k; τ ) = aeaτP (k − 1; τ)
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The term on the left can be expressed as a total derivative

d

dτ
(eaτP (k; τ)) = aeaτP (k − 1; τ)

Now, upon integrating with respect to τ we have

eaτP (k; τ) =

Z τ

0

aeatP (k − 1; t)dt+ C

We note that P (k; 0) = 0 so that the constant of integration is C = 0.
Rearranging,

P (k; τ) = ae−aτ
Z τ

0

eatP (k − 1; t)dt (4.15)

We can now apply the recursion relationship starting with k = 1 and making
use of (4.13) to obtain P (1; τ) . Then we can do the recursion again to obtain
P (2; τ), and so on. We ultimately conclude that the Poisson distribution can
be expressed as

P (k; τ) =
(aτ)ke−aτ

k!
(4.16)

The expected number of photons in τ can be obtained by finding the first
moment.

E[k] =

∞X
k=0

k(aτ )ke−aτ

k!
= aτ (4.17)

If τ corresponds to time in seconds then a corresponds to the average rate
of photon arrival in photons per second. The quantity aτ corresponds to
the parameter λ = np that was discussed in connection with the binomial
distribution. The connection is made by imagining that τ is divided into a
very large number n of intervals and that the probability of a photon landing
in any given interval is p. This corresponds to “success” in Bernoulli trials.
Then the the expected number of photons in the n intervals is np = λ and
is also equal to aτ . Hence, λ = aτ .When the rate a is given and the interval
τ is fixed, it is common to write the Poisson distribution as

P (k;λ) =
(λ)ke−λ

k!
(4.18)

This is the form you will get in Exercise 5.
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Figure 4.2: Graphs of the Poisson distribution for λ = 1, 3, 10.

The variance of the Poisson distribution is calculated by

var(k) = E[k2]− E2[k] = aτ (4.19)

The calculation is left as an exercise. Note that the mean and the variance
of a Poisson distribution are equal to each other. This is illustrated in Figure
4.2 in which the Poisson distribution is plotted for λ = 1, 3, 10. Note how
the location of the peak, which is approximately equal to λ, and the width
increase together.

4.3.1 Compared to Binomial Distribution

We expect the Poisson distribution to be a very close approximation to the
binomial distribution for small values of p. A comparison can be made in the
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graphs of Figure 4.3, where we see that improvement in the match as p is
decreased from 0.5 to 0.1. This would indicate that we should expect good
agreement for conditions in which n is large and p small.

Figure 4.3: Comparison of the binomial and Poisson distributions for n = 100
and p = 0.1, 0.3, 0.5. In each case the parameter λ = np is used in the Poisson
distribution, so the graphs are plots of b(100, k, p) and P (k;λ = 100p) versus
k.

We will illustrate the use of the Poisson distribution and compare it to
the binomial distribution with an experiment that uses a random number
generator.This example simulates the use of 10×10 array of detector elements
in beam of light.

Example 4.3.1 Suppose that a photon stream that contains n =1000 pho-
tons falls on a 10 × 10 array of detector elements. The probability of any
given photon hitting any given element is p = 0.01, so that we expect about
λ = np = 10 photons to fall on each element. We will do N = 1000 trials
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k b[1000, k, 0.01] P (k, 10) m
0 0.00004 0.00005 0
1 0.00044 0.00045 0
2 0.00220 0.00227 3
3 0.00739 0.00757 8
4 0.01861 0.01892 19
5 0.03745 0.03783 31
6 0.06274 0.06306 55
7 0.08999 0.09008 92
8 0.11282 0.11260 115
9 0.12561 0.12511 126
10 0.12574 0.12511 136
11 0.11431 0.11374 121
12 0.09516 0.09478 98
13 0.07305 0.07291 64
14 0.05202 0.05208 46
15 0.03454 0.03472 42
16 0.02148 0.02170 21
17 0.01256 0.01276 10
18 0.00693 0.00709 8
19 0.00362 0.00373 3
20 0.00179 0.00187 1

Table 4.1: The number of trials (total of 1000) in which k photons strike
a particular cell is in the right-hand column. The binomial and Poisson
distributions are shown for comparison.

and count the number of trials in which some particular element, such as
(7,7), is hit k times. The results are shown in Table 4.1. If one multiplies
the binomial and Poisson probabilities by N, then the experimental results
compare favorably with the distributions. Every time the experiment is done
the results will be a little different. This illustrates the randomness of Poisson
arrivals.

On any particular trial there will be a distribution of the photons across
the array, with about λ = np = 10 photons hitting each cell. However,
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the distribution is quite uneven, with a standard deviation of σ =
√
λ =√

10 = 3. 16. This is illustrated in Figure 4.4, which is the result of one such
experiment. The photon count for each cell is shown by the height of the
bar. Note the variation across the array. As the number of photons per cell
is increased, say by a longer exposure, both σ and λ will increase, but their
ratio will decrease as 1/

√
n. That is why longer exposures appear less noisy.

Figure 4.4: An illustration of the distribution of 1000 photons across a 10x10
array.

4.4 The Normal Approximation to the Bino-
mial Distribution

The normal distribution, also known as the Gaussian distribution, is one of
the most important in probability analysis. It arises naturally as a limit of
both the binomial distribution and the Poisson distribution. It is possible to
derive the relationships through limiting operations. Here we will be content
with a statement of the results and some examples.
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The Normal Distribution

The normal distribution is the “bell-shaped curve” that is familiar in many
applications of probability and statistics. We will define it here and illus-
trate some of its properties before looking at its relationship to the other
distributions.

Definition 4.4.1 Normal Distribution The function defined by

(x) =
1√
2π
e−

1
2
x2 (4.20)

is called the normal density function. The normal distribution function is

Q(x) = 1√
2π

Z x

−∞
e−

1
2
t2dt (4.21)

The distribution function is often presented in a slightly different form
This form, which is called the “error function” is

erf(z) =
2√
π

Z z

0

e−u
2

du (4.22)

This form of the error function is built into the IDL language as the func-
tion ERRORF. In the exercises you are asked to show that the distribuition
function and the error function are related by

Q(x) =1
2
+
1

2
erf
µ
x√
2

¶
(4.23)

The normal distribution has a mean value of µ = 0 and a standard
deviation of σ = 1. If a random variable X with a normal distribuition is
replaced by S = σX+m then, by a simple change of variable, the probability
density function for S will be

fS(s) =
1√
2πσ2

e−
(s−m)2
2σ2 (4.24)

We will refer to this as a Gaussian distribution with mean m and standard
deviation σ. The probability distribution function is

FS(s) = Q
µ
s−m
σ

¶
(4.25)
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Figure 4.5: The normal density function and the normal distribution func-
tion.

4.4.1 Relationship to the Binomial Distribution

Let Sn be a random variable that is equal to the number of successes in n
Bernoulli trials. Then Sn has a binomial distribution. The probability that
the number of successes is between two values, a and b, is P [a ≤ Sn ≤ b],

P [a ≤ Sn ≤ b] =
bX
r=a

b[n, r, p] (4.26)

The following theorem states that this probability can be computed by use
of the normal distribution.

Theorem 4.4.1 (DeMoivre-Laplace limit theorem) Let m = np and
σ =

p
np(1− p). For fixed values of parameters z1 and z2, as n→∞,

P [m+ z1σ ≤ Sn ≤ m+ z2σ]→ Q(z2)−Q(z1)
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The parameters z1 and z2 are distances from the mean measured in units
of σ. If we define a normalized random variable

Zn =
Sn − npp
np(1− p) (4.27)

we have the equivalent probability relationship

P [z1 ≤ Zn ≤ z2]→ Q(z2)−Q(z1) (4.28)

This is an expression that is in standard units, often referred to as a z-score.
To find the probability that a normal random variable falls between two
limits can be found by using a single normalized table of numbers. Stan-
dardized tables of the normal probability distribution function are available,
and shortened ones are included in nearly every book on probability and sta-
tistics. An equivalent table could be provided in terms of the error function.
Rather than using tables we now tend to use a computer, but the principle
is the same. An expression of the probability relationship above in terms of
the error function is

P [z1 ≤ Zn ≤ z2]→ 1

2
erf
µ
z2√
2

¶
− 1
2
erf
µ
z2√
2

¶
(4.29)

The binomial, Poisson and normal probability functions give comparable
results for large values of n. Graphs of the distributions are shown in Fig-
ures 4.6 and 4.7. From these figures we can see that the agreement improves
both as n increases and p decreases. Because the Poisson and normal distri-
butions are analytically convenient, we tend to prefer them to the binomial
distribution for calculations.
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Figure 4.6: A comparison of three probability functions with n = 100 and
p = 0.1, 0.3, and 0.5. The Poisson distribution is plotted with λ = np, and
the normal is plotted with m = np, σ =

p
np(1− p). The three distributions

are very close for small values of p, and the normal and Poisson distributions
are quite close even for larger values of p.
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Figure 4.7: A comparison of the binomial, Poisson and normal probability
functions for n = 1000 and p = 0.1, 0.3, 0.5. The normal and Poisson
functions agree well for all of the values of p, and agree with the binomial
function for p = 0.1.
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4.5 Exercises

1. Show that the ratio

b(n, k, p)

b(n, k − 1, p) = 1 +
(n+ 1)p− k
k(1− p) (4.30)

and thereby show that each term is greater than its predecessor if
k < (n+ 1)p and smaller than its predecessor if k > (n+ 1)p. The dis-
tribution is therefore monotonically increasing until it reaches a peak
value and then is monotonically decreasing. If (n+1)p = m is an inte-
ger then b(n,m, p) = b(n,m−1, p) and there are two maximum points.
Otherwise, there exists exactly point with index m that satisfies

(n+ 1)p− 1 < m ≤ (n+ 1)p (4.31)

where the distribution has its maximum value. You are asked to carry
out the analysis in Exercise 2 to show that the expected number of
successes in np.

2. Let Sn be the number of successes in n Bernoulli trials with p equal
to the probability of success on any one trial. Show that E[Sn] = np.
[Hint: Show that

Pn
k=0 kb(n, k, p) = np

Pn−1
k=0 b(n− 1, k, p)].

3. Let Sn be the number of successes in n Bernoulli trials with p equal
to the probability of success on any one trial. Show that var[Sn] =
np(1− p). [Hint: Use a technique similar to the previous problem withPn

k=0 k
2b(n, k, p)− (np)2 = np(1− p) after simplification].

4. Consider a sequence of Bernoulli trials with p = 0.5. Determine the
number of trials that you must conduct such the probability P [Sn/n >
0.51] ≤ 0.01.

5. Show that the Poisson distribution can be obtained as a limiting form
of the binomial distribution in which n is increased without limit and
np = λ so that p is reduced as n is increased so that the product is
constant. [Hint: Show that the ratio b(n, k, p)/b(n, k − 1, p) ≈ λ/k.
Show that b(n, 0, p) ≈ e−λ by taking b(n, 0, p) = (1 − p)n to the limit
with p = λ/n. (Recall the definition of e.) Then, knowing b(n, 0, p) you
can find b(n, 1, p), etc. ]
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6. Show that the probabilities in the Poisson distribution sum to unity.

7. Carry out the calculation of the sum in (4.17) to obtain E[k] = aτ .

8. Carry out the calculation of the variance of the Poisson distribution in
(4.19).

9. Show that the area under the normal probability density function is
unity.

10. Verify the relationship between the normal probability density function
and the error function, as given in (4.23).

11. Show that the mean and standard deviation of the expression in (4.24)
is actually m and σ, respectively. Show by appropriate sketches how
the curve changes with variations in these parameters.

12. Show that the probability distribution function for a Gaussian random
variable with mean m and standard deviation σ is given by (4.25).
Show by appropriate sketches how the curve changes with variations in
these parameters. Find the value of s in terms of m and σ for which
FS(s) = 0.99.




